Module 4

In-Class Design of a Water Distribution System

$75 \mathrm{lb} / \mathrm{in}^{2}$	20 homes		7 homes and 3 adts	
830 ft elev.	Pipe 1: 1200 ft	920 ft elev.	Pipe 5: 1580 ft	915 ft elev.
10 homes		Pipe 2: 850 ft	2 apts 1 school	12 apts
Pipe 4: 680 ft				Pipe 6: 785 ft
780 ft elev.	25 homes	850 ft elev.	16 homes	875 ft elev.

Pipe 3: 1050 ft
Pipe 7: 1220 ft

Conservation Design

Home: 2,000 ft ${ }^{2}$, ordinary construction, 2.4 people, 0.7 cats, 0.3 dogs.... (assume 38.9 $\mathrm{gal} /$ person/day for the average per capita water use rate)

Apt: quadplexes (each of 4 units: 1,200 ft^{2}, ordinary construction, 2 stories, 1.7 people, and no pets) (assume $33.3 \mathrm{gal} /$ person/day for the average per capita water use rate)

School: 450 pupils, $15,000 \mathrm{ft}^{2}$, fire-resistant construction (assume $12.3 \mathrm{gal} /$ student/day for the average per capita water use rate)

Design a water distribution system (considering fire flows) for the above site. Make (and state) necessary assumptions (pipe type and roughness, unit water use, minimum pipe size, etc.). Assume a water inflow rate that is about twice the calculated peak water demand. For the fire demand, assume the worst single fire. Do the calculations in the following major steps:

1) calculate water use (with fire demand) for each pipe length.
2) assume internally consistent distribution of flow for each node
3) calculate initial estimate of pipe diameter (using $3 \mathrm{ft} / \mathrm{sec}$ velocity)
4) do Hardy-Cross calculations to determine actual flows in each pipe
5) calculate pressure at each node
6) evaluate the results
