•	75 lb _f /in ²	20 homes	7 homes and 3 apts		
	830 ft elev.	Pipe 1: 1200 ft	920 ft elev.	Pipe 5: 1580 ft	915 ft elev.
	10 homes		Pipe 2: 850 ft	2 apts 1 school	12 apts
	Pipe 4: 680 ft				Pipe 6: 785 ft
	780 ft elev.	25 homes	850 ft elev.	16 homes	875 ft elev.
•	Pipe 3: 1050 ft			Pipe 7: 1220 ft	

Module 4 In-Class Design of a Water Distribution System

Conservation Design

Home: 2,000 ft², ordinary construction, 2.4 people, 0.7 cats, 0.3 dogs... (assume 38.9 gal/person/day for the average per capita water use rate)

Apt: quadplexes (each of 4 units: $1,200 \text{ ft}^2$, ordinary construction, 2 stories, 1.7 people, and no pets) (assume 33.3 gal/person/day for the average per capita water use rate)

School: 450 pupils, 15,000 ft², fire-resistant construction (assume 12.3 gal/student/day for the average per capita water use rate)

Design a water distribution system (considering fire flows) for the above site. Make (and state) necessary assumptions (pipe type and roughness, unit water use, minimum pipe size, etc.). Assume a water inflow rate that is about twice the calculated peak water demand. For the fire demand, assume the worst single fire. Do the calculations in the following major steps:

1) calculate water use (with fire demand) for each pipe length.

- 2) assume internally consistent distribution of flow for each node
- 3) calculate initial estimate of pipe diameter (using 3 ft/sec velocity)
- 4) do Hardy-Cross calculations to determine actual flows in each pipe
- 5) calculate pressure at each node
- 6) evaluate the results